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" NATIONAL BUREAU OF STANDARDS

The National"Burcau of Standards® was established by an act of Congress on March 3, 1901.
. The Bureau’s averall goal is to strengthen and advance the Nation’s science and technology
and facilitate their effective application for public benefit. To this end, the Bureau conducts
research and provides: (1) a basis for the Nation's physical measureinent system, (2) scientific

and technological services for-industry and government, (3) a technical basis for equity in -

trade, and (4) technical services to promote public safety: The'Bureau’s technical work is per-

formed.by the National Measurement Laboratory, the National Engineering Laboratory, and .

“ the Institute for Computer Sciences and Technology.

THE NA’I’IONKL_MEASUREMENT_ LABORATORY provides the national system of
"physical and chemical and materials measurement; coordinates the system with measurement
systems of other nations and furnishes &s}cntial services leading to-accurate and uniform
physical and chemical measurement throuéhoqt the Nation’s scientifi¢ community, industry,
and commerce; conducts materials research leading to improved methods of mwsu}emcnt,
standards, and data on the properties of materials'needed.by industry, commerce, educational
institutions..and Government; provides advisory and research services to other Government
agencies; develops, produces, and distributes Standard Reference Materials; and provides
calibration services. The Laboratory consists of the following centers: - :
- 4 L BN
Absolute Physical Quantities? — Radiation Research — Chemical Physics —
Analytical Chemistry — Materials Séience ' |

THE NATIONAL ENGINEERING LABORATORY provides technology and technical ser-
vices to the public and private sectors to address national needs and to solve national
problems; conducts research in engineering and applied science in support of these cfforts;
sbuilds and maintains competence in the necessary disciplines required to carry out this
rescarch and technical service; develops engineering data and measurement capabilities;
provides engineering measurement traceability services; develops test methods and proposes
engineering standards and code changes; develops and proposes new engineering practices;
and develops and improves mechanisms to transfer results of its research to the ultimate user.
The Laboratory consists of the following centers: :

'Applied Mathematics ~— Electronics and Electrical Engineering? — Manuféct’uring
E_rfgineg:ring i Building Technology — Fire Research — Chemical Engineering? -

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts,
rescarch and provides scientific and technical rvices to aid Federal agencies in the selection,’
chr technology . to imprave effectiveness and -

acquisition, application, and use of comp
economy in Government operations in accordance with Public Law 89-306 4o us.c 159),
relevant Executive Orders, and other directives; carries out this mission by managing the
Federal Information Processing Standards Program, developing Federal ADP standards
guidelines, and managing Federal participation in ADP voluntary standardization activities;
provides scientific and technological advisory services and assistance to Federal agencies; and
provides the technical foundatign for computer-related policies of the Federal Government.
The Institute consists of the fol owing centers:

Programming Science and Technology-— Computer Systems Engineering.

‘Headquarters and Laboratorics at Gaithersburg, MD, unléss otherwise noted: -
mailing address Washington, DC 20234, .
JSome divisions within the center are located at Boulder, CO 80303
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Reports on Computer Science and Technology

The Natronal Bureau,of Standards has a specral responsnbrlrty within the Federal
_ Govemment for computer science and technology activities. The programs of the >
NBS Institute for Computer Sciences and Technology are designed to provrde ADP
standards, [guidelines, and technical advrsory services to improve the effectiveness.
of computer utilization in the Federal sector, and to perform appropriate research
and: development efforts as fo,undatmn for such activities and-programs. This
publication series will report these NBS efforts tothe Federal computer community as
~. well asto interested specialists i inthe academrc and private sectors. Those wishing
receive notices of publications i in this series should complete and return the form
at the~end of this publrcatron . ) N -
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.ABSTRACT -~ - . .
Thirty  techniques. and tools fe; 'va11datlon,' vertlfxcatlgn and testing
" (V,V&T). are descrlbedﬁ_»Eac&,geqcr:pttvn‘iuctudes the “basic features of the
technique or' tool, tﬁé""but"fhe ‘output, an example, an ‘assessment of the
: effectzveness and’ usability, app11cab111ty,'an estimate of the learnlng time
and tralnlng, an estzmate of needed tesources, and references.

. o . N - . T o ) AN
Keywords:  automated- software ' tools; dynamic analysis; formal analysis;
'software testing; software verification; static gnalysis; test coverage;
validation; V,V&T techniquesg; V,V&T tools. o v _ .
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1.1 Introduction.’ - B e : L

"l'he Institute for Compi;ﬁer _Scieﬁées and . Technolbgy‘ (ICST) ca'rr"'iesv out the
_fellowing .responsibilities under P.L. 89-306 (Brooks Act) to improve the -

Federal Government's management and use-of ADP: . v . -

.. ‘ : ™

' ©'develops‘Federal autcmatic data processing standards; - o -

. O provides égenc;,es' with, scientific and technological advisory services
.relating to ADP; : - ' e

o undertakes nééessary reSearch in computer sciences andA techndiogy. :

In-partial fulfillment of Brooks Act responsibilities, ICST issues Special
Publications (S.P.). This document is a reference guide for techniques and
tools which may be used in conjunction with a validation, verification, and
testing (V,V&T) methology. _ : . .

'n-rxé document consists of three sections::
6 A suggested methodology for the selection,of‘, V,V&T techniques and tools;

) © Summary matrices by development phase usage, a table of techniques and tools
with  associated keywords, and an -alphabetized table of keywords with
associated techniques and tools. o S ' )

6 Description of 30 V,V&T techniques and tools.
This document can be used independently as a referemce or can be used - in.
conjunction with "Guidelines -on- ' Planning for Software Validation,
Vgrific_ation_,' and Testing" (to be published as a FIPS PUB in 1982)".
A glossary, ,inc}udeh as Appendix A, defines: terminology used in this document, .
* L. \. . L . . B - . R
2.1 A Suggested Methodology for the Selection of V,VAT Techniques and Toals

: ‘/I'he FIPS: PUB VGuidglines on Planning for Software Validation, Verification,
and Testing"” (to be -~published) explains: the role -of V,V&T in software -
‘development, stressing an integrated approach. V,V&T planning by identifying
goals, determining factors which influence the V,V&T activity, selecting V,V&T

“techniques and tools, and developing a detailed V,V&T plan are explained in
detail. This document is particularily helpful in the selection of techniques
and tools. S ‘ o

Selecting techniques and tools begins with the determination of a goal - a .
' specific, measurable outcome. example, 90 percent statement execution is

a goal. Once a goal is determin®l, the selection. matrices (section 3) are
utilized to see if a technique or tool is applicable to the selected, goal.
For the example above, s&atement coverage “is checked during code’ exegcution,
Referencing the code selection matrix, one finds statement coverage. Next, .
“the alphabetized keyword table (section 3)“is searched for the. appropriate-
keyword(s). ' For -the example, the tool for statement coverage is found to be
. : . A, .o
[ .

h . v -
- * A



e ,f . .
& o o .
Tk ! R .- .

ST T pagea
‘. : : - .

- -
~

' ;';eéﬁ,_éobefé'ge analyzers. 'ﬁlg_ ‘last’ stebvf_is to reference the’ technique and tool -

~descriptions.- (section 4) and ¢onfirm, that the technique or tool' does

"~ accomplish the desired goal. Foq the example: under test coverage - analyzers,

gx_e statement - "Coampleténess,is measured: in terms of the branches, statements .

~Or "other elementary constructs which are.used: -during the execution of the

-\

- -program  over the tests", confirms that, a 'statement coverage analyzer measures

»

~ the completeness of statement -execution.* . ..

) é?{.\
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2.2 Selection Aids -

'+ Tables 3.1-1,3.1-2, énd 3.1-3.séparate techniques and tools into the broadly

defined software _qev'elopmeht'_’phasss.':' requirements, design, and code.
The purpose of a selection matrix\".fg- to '_'su:ggest possible techniques or tools
for a  goal ‘in. a ‘development phase. “The goal is stated . (directly or

. indirectly) in terms of -the form or. content of a development product

‘(requirements,’. design, code).j The matrices list V,V&T techniques and tools
applicable to analyzing the form or content of a  product. Specifically,

- manual and-awtamated static’analysis techriques and tools aid in analyzing ‘the

form.of :each of the three products. Dynamic and formal techniques and tools

’ aidr‘:in.gnalyzing the-semantic content of each.of the products.

" Table 3.1-4 lists, alphabetically, the keywords and the associated technique

' The pages that follow contain three selection matrices:

or tool. It may be used to identify characteristics of the technique 6r tool
from one of the three matrices in Tables 3.1-1, 3.1-2 or 3.1-3.

Table 3.1-5 'lists each technique or tool described in section 4 with
applicable keywords. It may also be used to identify. the characteristics of a
“technique orj»tool. L )

The reader with sufficient knowledge may skip Tables 3.1-1 through 3.1-5 and
go directly to the technique and tools sect_ion. ' :

3.1 Sgl_écted Matrices and Keyword Tables . _ - )
_ ~Table 3.1-1 < Requirement Specifications

Table 3.1-2 - Design Specifications ~ o
Table 3.1-3 - Code , -

and : .
Table 3.1-4 - V,V&T Techniques and Tool Keywords ) :
‘Table 3.1-5 - V,V&;‘T Techniques and Tool with Keywords - ~

¢
] s ‘, s R \
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T L R S
ANALYSIS TYPE . AUTOMATED TOOLS = MANUAL TECHNIQUES REVIEWS -
gtatic _"-ReQUibéments o Requirements‘ . Inspections
o - tracing aids . tracing aids _ - Peer review ©
< . 7 (Note 1) ~ - .'* ' .(Notes 1&2): - Formal reviews ..
7" Cross-reference’ Inspections o e

: .~ Data flow-analyzer - Selected manual
' - . 'application of- -
- .techniques-listed

amt in column one *
| RS “@ote3)
" Dynamic : Reqpiréﬁents " " 'Assertion generation.- .Walkthroughs
. - analysis . ° . (Note ) . Formal reviews
_Cause-effect Specification~based .
*  graphing - functional testing
Assertion gemeration . (Note5) =~ =
Data flow analyzer - Cause-effect graphing
_ - (Note 5) -
- _ . Walkthroughs -
Formal - °  Assertion generation Formal verification
. (Note 6)

1) The requirements indexing and cross-referencing -schémes are esteplisheg“énd:
documented as .part of the.requirements specification. . & T ‘ -
2) Requirements tracing may be pérformed through a totally manual process.
3) Certain techniques may be ‘manually applied to small applications or on
‘ selected portions of a given specification. This requires planning .and
* and preparation. The larger the amount of information béing analyzed,
- the greater the probabjlity of error.- =~ - - : ]
- 8) ‘Assertion-genération is performed either for later analysis using an _
assertion processing tool, or- for manual analysis as an adjunct to testing.
5) This is a test data generation technique/tool: . - o
6) Axiomatic specification is necessary to support analys;sr

TABLE 3.1-1 L .
SELECTION MATRIX I - REQUIREMENT SPECIFICATION -

~

4
—
e
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. ANALYSES TYPE. AUTOMTED TOLS : - MANCAL -Tséiméfﬁsé - ReTENS

Static .. . - Requirements R ’ﬁequirements ok InSpections 2
: S . tracing aids __+ - tracing (Note 0 Peer review. - *
o Cross~-reference™ - Inspections S+ Formal renews
SEEETO --Data. flow analyzer - Selected manual / _
LT ~: - . application of-. o .
: e L - . techniques 1isted m "
. T e coltxnnone” s e
Dynamic = | Cause-effect T Assertion generation Walkthroughs )
S graphing . . (Note 3) - 'Formal rev1ews
o e Specification-based o y
- T - “funetional testmg SR -
o , 0 (Note .4) * - ' =
. A B L Cause-effect graphmg B ) ‘% L
: S ‘ T (wote y) _ . g
o . o Walkthroughs ‘_" '
Formal Analytic modeling of Algorithm analysis ‘ -
*,  -software designs . Formal verification -. * ; ,
' (Note6) ~ ~~ "~ (Notes 7&8) L
Global rofndoff - = T e
. analysis of - I AR A : ,
. "algebraie processes - . < . R S
(Note 5) :
Fonnal verification ;
L (Note 8) o -
1) Requirements tracing may be performed through a totally manual process.
' 2) Certain techniques may be manually applied to small applications or ‘on- "

., Selected portion® of a given specificatidn This requiges planning and - _
' preparation. .the. larger the amount of mformation being analyzed,” - .

. the- greater the probability of-error. . i,
3) Assertion generation is performed either for later anaiysis using an'
assertion processing tool, or for manual analy31s as an adJunct to testmg. s

4) This is a test data generation technique/tool. o , _
5) Analyzes an algebraic algorithm,- independent of a givenslevel of L
specification an therefore is ‘applicable to a design or code le el naeoro

Specification. BT
6) Requires the man -development of, a model whic‘h is then run. ,
7) Axiomatie specifitation:is: necessary ‘to support analysis. =~ - TR
8) Fo verification i's a primarily manual exercise though supporting tools
~ have been developgd.. ‘
¢ : . QT

. TABLE 3. 1-2 . - oo T :
i SELEC‘TION' MATRD( II N DESIGN SPECIFICA'BIONS e
- CITURIPR G - ;
- - s / " id »
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Cross-reference - %" Inspections: i ' I-‘ormal reviews:

“tracing aids, (Note 1) ‘Peer- review = 7 .

— - Data TIow analyrer = - Selected manual _
- Control structure - ;application of - .- . ...
~. . analyzer . techriques: listed in‘ R o -
7. Interface checker~ " column ome . . . ]
) “:nghysical_units'- ,ﬂ'ﬁt(Note 2 e ,

ST :__-__;t-_"—_;'.,.-;.{:;‘;_’Code auditor S - ‘_"5 SR L _
RO .j;,-'l'est data generator N L

e __--_.:'fAssertion processing ;_Assertion generation : Halkthr:oughs
v, 7.7 Test data generators . “(Note 3)- I-‘onnal reviews

7 Test support o 7 Regression testing .
. facilities - -7 - . .. (Note 6).:% * o
% Test: ooverage " Walkthr S, o - - .
L T analysEs - s T T R
Bl Mutation analysis L e ST e e

e

Coo T T ANote By, A N T g
L0 ot . Interactive test aids . . .
. "+ Exectution ‘time - .

S estimator/analyzer(Note 5) LT e
© .. . Software monitor(Note 5) . *LJ I
;7. 'Statement'coverage : R UL R N
_ v Symbolic evaluat:}on s R
“Formal .. " Formal verification - I-‘ormal verification L
Co — l (Note 7) K e (Note 7) S j"a::__ R i _-__-,

1) Requiranents tracingmay be performed through a totally manual prooess.
- 2) Certain techniques may be manually applied-to-small-applications or-on.
2 a’ selected portions of - a given specification. . This requires-planning and .
- and preparation. . Thelarger the amount of information being analyzed,
' the greater the probability of error. ..
_,-;3) Assertion-generation -is: perfomd either for later analysis using an-.
- assertion processing ‘tool, ‘or for manual analysis as an adjunct to testing
: ,,.yll) The: objective‘ 'oi' mutation analysis is to help assess the sufficiency of the
Cs T test data.
}»‘5) Assist in- testing the satisfaction of performance related requirements
‘6)_.Testing. after modification of .tested software, i.e.; retesting.-s =~ - SR
“7) Formal verificatien’ is a primarily manual e;ercise though supporting tools o
g have been developed o
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. ,accuracy analysis . Lo algorithm analysis T
~ -algorithm efficiency, e ' algorithmsamalysis

~ . amount. of -'Space (memory,’ ,disk etc ) used .t algorithm analysis-

-. .. agiount’ of ‘work. (CPU- operations) done .-.2.  -algorithm analysis

,____aasention_violations - - -assertion _processing
bottlenecks e sy S Y analytic modeling of _
e F0 s el 'software designs . .
boundary te,st cases AR RIS .specification-based functional;. A
‘ B ""_':,,- ©. . testing .
e branch and path identification » . contrcl structure analyzer-~ .
" bramMch testing S0 T test coverage analyzers o
*~ eall graph - AT e control, structure analyzer S
" :check'list:: . // N V;inspections e, Lo e
- ‘code’ reading T N .+ peer review . .
conmleteness rot‘ test data' - .t 'mutation analysis ’ .
tional upper. bound how fast . algorithm analysis - -
cons tenc ‘in computations ©.« - -physical units testing
- - correspondence between actual and formal '.;interface checker SRR
: parameters -~ ORI R - L
/data; characteristics L P assertion generation S
dynanic testing of” assertions” '_ o j‘ .. : assertion. processing s
- environment simulation Lo . test: support ‘facilities -
~ evaluation along program paths N ‘Symbolic execution L
“’execution monitoring o _‘ . software monitors .= .*: -
execution sampling - 5 . softwareé. monitors -
“execution. support . ' T .. - test support. facilities
expected.inputs outputs andv S ~‘assertion generation T
.intermediate results. ) SECRR
. expected. versus actual results L comparator L
file (or"other -event) sequence errors o data flow analyzer
‘formal ‘specifications . - b Y assertion generation
" functional interrelationships L requirements analyzer
* global information flou B .- interface checker .
go/no go decisions - - formal reviews
“hierarchical - interrelationships of modules :control . stru::ture analyzer CeTE
information flow consistency e~ requirenents analyzer R
- inspections - e L 'peerireview R
- inter<module structure o " R cross-reference generators
loop invariants - =~ . . ... assertionm generation B
‘manual sinylation oo oo walkthroughs - ‘
module-. Anvocation = o oo o control structure analyzer

. S PEECRREEE o algebraic proce;ses e
"- ‘.:._' ) :A: :' i'-"". . Vo .9 A T iR BEAN DL -‘ '.-,'—- ,‘
VV&T TECHNIQUEANDTO(I.KEYWORDS ST .

: -~ . . . Lo | Lot .
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- ‘path testing o ' test coverage analyzers |
- performance analysis Co v,_requirements analyzer
physical units S - assertion generation

portability analyzer
—progran—execution—characteristics———

._,v'

E R e =

proof of correctness

. -regression testing ,
requirements. indexinr -

- requirements specification analysis

" requirements to design correlation _ .—

‘requirements walkthrough
- retesting after changes i
. round-robin reviews .- -
: rounding error propagation

A '_selective progran execution
+ . standards-checker - :
statement coverage e
tatement tésting o g_,,.
tus reviews L
stem performanoe prediction

technical review

. test. case. preparation (definition and -

. specification) -
' test data generation

, . SV -specification-based ﬂmctional
o - S ‘r_ Lo R testing i .
i-:;"_test harness A U . test support facilitieg L
. testing thoroughness . = '~ =~ -. test coverage analyzers. . -
.. type checking e " interface checker- -, .- -
" uninitialized- variables T ~ data flow analyzer . ¢ = . .
. unused vafiablés’ . C .~ - .. ~dataiflow amalyzer . . . -
-+ variable.referénces - BRI, . cross-reference generators o
- - vapiable: snapshots?tracing N S ~.interactive test-aids . - -
verification»o,f algebraic computation - symbolic execution
., walkthroughs _ I .peer reviews
L o e ” TABLE 3 1-# (Continued)
v,v&r TECHNIQUE AND TOOL KEYWORDS . . |
;_;; e ' - A,;_,‘a . _'_._ st L
- . “ ; Y
SR 13 . o

s

D

.-~ ‘code auditor-. ’ '
‘*—‘execution—time"estima'tor/_ I

o

: . “analyzer

‘e
. 2 ST
./' - : I B L
. . P

v:sofbdare monitors

- formal: verification

..comparator . . -
:requiranents tracing s
. cause-effect graphing ’

requirements tracing -

"~ requirements analyzer
~ regression: testing
. peer reviews 3}

global roundoff analysis of
algebraic ‘processes . "
interactive test aids

-

'_codeauditor IO : R

- .formal reviews -
- -analytic modeling of_
_ software ‘deésigns

test coverage analyzers

.test coverage analyzers

‘peer review .
test data generators :

mutation analysis
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Algorittm Analysis

algorithm efficiency . L
amount of work (CPU operations) done
computational upper bound, how fast

: Analytic Hodeling of

' Software Designs o

 Assertion .Ge'n.erati’on Co

K ‘_ Assertion Processing
'Causegsffect Graphing

ECode }.tor

Canparator

Control Strucﬁu-'e,_nnaiyzerc... o

Cross-Reference Gcnerators

~

" module invocation

v variable references

| uninitialiaed variabl'es ,A ”

‘amount of space (memory, disk, etc o) used '
accuracy. analysis . o :

system performance prediction
‘bottlenecks L

formal specifications -
data characteristics -

- physical units

loop invariants = . -y
expected inputs, .- -

_outputs and intermediate results

assertionéiolations : S
dynamic ting of assertions = .. .,

test case design using formal specif,ication
requirements specification analysis

standards checker .
portability analyzer

regression testing
' expected versus actual results

call graph ' L
hierarchical interrelationships of =
modules : ‘ y

.0

_branch and path. identification
' inter-module structire _‘ |

—

. unused variables - '
file (or other event) sequence errors

Execution 'l'ime Estimator/Analyzer program execution characteristics

I-'orml Reviews '

| I-'omal ‘ 'Ve'rifioation

go/no go decisions
status revieus

proof of correctness

TABLE 3.15 | ‘, L

,m"rt-:cumus/mwmmmnns S
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" Global Roundoff Analysis of \

B | Algebra:lc Processes - \

/\ \

| _.f.'check list ,

. . - . . . “ - )
- . . AN . i . - et
CEPEEYS - . s ’-'" ~ . - e - .’ P e E AN
. : .. e

numerical stabﬂity S
rounding error propagatibn 7 | _y T

In_teract.ive Test Aids S

Interface Checker . .

L selective program execution
L '_,_variable snapshots/tracing

' 'icor1>espondence between aci:ual ahd forml

o ")}

parameters - SR

type checking

- .,global information flow L

. -Mitation Analysis -
Peer Review
" ‘Puysical Units Testing

".Regression Testing
: Requirenents Analyzer :

Vtechnical 1

' consistency in canputatibns
: retesting after chapges e

"'test data\generation .

completeness of test. d%ta o . -

code reading \| R
round-robin revitws : . ..
walkthroughs
inspections

<

functional interrelationships

" information flow consfstency '

performance analysis.

. requirements walkthrough

'Requirements Tracing

' Speciﬁcation—based Fxmctional

Symbouc E_xec_i.ﬂ:_ion S

5

_fexecution, sampl:lng
-execution mnitoring .
o program execution characteristics e

boun test»

"requirements indexing © /\\ e P

requirenents to design correlation a

test data generation . N‘\ -

B .evaluation along progran paths
k veriﬁcation of algebraic canputation

\

. test hamess -
execution support

enviroment sinnlation

T TABLE 3 15 (Conﬁ.nued) ~
- V,V&T TECHNIQUE/TO(I. HITH KEYHORDS
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Test Coverage . Analyzers B %} branch testing
. S TR statement testing T
- = . . Statement coverage ': N
. . <. . . 'pathrtesting ~ -
e T T testing thouroughness .-

'f-rest Data'Generators7:” RFEE test case preparation (definition
' o - "'1 and specification) _

Walkthroughs = . . 7"_manua1 simlation

7 TABIE 3.1%5 (Continued) - -
. V,V&T TECHNIQUE/TOOL WITH monns |

- . . e
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R mmi)ucrlon T TECHNIQQE AND TOOL DESCRIPTIONS N Pas

‘Each technique and tool description is alphabetically presented in-a standardr
format. The following table describes the entries for each where "n" is the

Y

- section 'number o 4 R -
“ﬂ"nd..}lane - e —
. This is the accepted title, or when an appropriate one does not exist ‘an
-~invented title. o N _ I e

4.n.2. Basic Features o T S ;
'A short description of the technique or tqoi -

.n3. InformationInput A -
A description of the input required for use._ '

4.n.4, InformationOutput I - L
A description of the results o£ the technique or the output of t’ne tool

'4n5. OutlineofHethod v ’ '
A brief list of the actions that a user is- expected to perform.

- .

4.n.6. Example = I | ' e

An example to illustrate the inputs outputs and the method.

.n.7.- Effectiveness \‘ R
A brief assessment-of the effectiveness and usability, inoluding underlying
assunptions and difficulties that m be expected in practice.

4.n.8. - Applicability
" An indication of the 31tuation 1n which the technique is likely to be ‘useful.

1 N PN . . l

_—u.n—.g. - Leamin T M-— M

-

An estimate of the learmng time and training needed to use the technique or .

_.tool successmlly. R TN . , ~ .
4.n.10, Cost, - o
An estimate of the- resources needed. - . L
4.n.11. References ) N
_Sources of additional information.
| TABLE .11 o Y

".TECHNIQUE‘; AND TOOL DESCRIP‘I’ION ENTRIES~ »'
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~ 4.2.1 Name Algorithm Analysis S R 8
4,22, Basic features._- mo phases of algorithm analysis be

. distinguished:. M"a:-priori:-: ‘analysis" and . Ma- posteriori ‘testing.m™: In a priori. 3
. analysis a ‘function- (of ' scme relevant parameters) is devised which bounds;: the
algorithm's use of ‘time and% .8pace to ccmpute an acceptable’ ' solution. The
—analms—assunera model of camputation. such -as: , a - Turing - machine, . RAM
(random  access machine), general purpose machine; etc; - Two' general kinds' of
" . problems are usually treated: (1) analysis of a particular algorithm; . and
o .'; (2); analysis of a class of algorithms. In a posteriori testing actual -
. . statistics are collected about the algorithm's consunption of time and space
" while it. 1sexecuting o A

4‘.2_.'3._ Information dnput. . . L |

: “a, Specification of algorittnn L “ '
| b, Progran representing the algorithm .
. 4..2”._'4; Information output L

A priori analysis : : : -
 Confidence of algoritlms' validity B
Upper and: lower. computational bounds - . - R S S
. Prediction of ‘space usage @~~~ @<= . , T
Assessment of optimlity ' S e

b. A posteriori testing o .
- Performance profile N

3,2.5,° Outline ofmethod. et
a. A priori analysis

Algorlthms are analyzed with the intention of improv:.ng them, if possible, and E
for choosing .among several available for a problem. The following criteria SR
‘may be used: v - DA X :

Correctn,ess#: - .f .
- Amount of w done - 7

- Amount of space used T S s
-Optimality . L,
_Accuracy analysis Lo T e e e e L

: m. 'lhere are three mﬁqr steps inVolvedf,if:i_nf ;."esi_:ablishing_ the ‘
L correctness of an algorithm ' e RO

(1) Understand - that an algorittm is correct i‘f when given a valid input’ IR
it computes for a finite amount of time and produces the right answer. :

. . a -
- R . .- .



o ‘used by the algorfttnn are correct. ", ",

. ‘: | . - . . .. . . . . \ . .
(2) Verify that the: thematical propertles of the me‘Ehod and/or fonmlasa

‘ :-ff‘a'g'e‘w o

e (3) Verify by mathematical argunent that the instructions of the algorithm;_ : )
©"-do produce the right answer ‘and: do terminate T T e .

. .Anmmj _Q£ mx:k .dgng A priori analysis 1gnores all ‘of the factors which

are -. machine or programning ‘language - dependent - and concentrates. on
determining the order of  ‘magnitude: of the frequency of execution of

- statements.. For demoting the upper bound on' -an algorlthm ‘the O-notation;_ T :

" .is used. The . following notational symbols are ‘used - in the follomng
_-description° **-exponentiation, . [ ]-subscription. < -

~Definition, f(n) O(g(n)) if and only if- there exist two p031t1ve'-

- zconstants C and n[o] such ;hat f(n)_<.C g(n) for all n2n[o] - .

The most .common . computing ‘times “for algorlthms are: - 0( 1)<0(log-' o

n)<0(h)<0(nlog . n)<0(n**2k0(n“3r_/062**n) 0(1) means that-the number

of executions .of -basic operations-is fixed-and hence - the total time is . .. -

bounded, by a: constant. The first six orders of .magnitude are bounded" by a .
- -polynomial. - However, there is' no integer such that n*¥m bounds 2¥¥n, " An - -
~algorithm - whose - computing time -has this property . is said 'to require
exponential -‘time.  There.are notations for lower  bounds and asymptotic

‘bounds - (see reference. (4). - for. ‘details).  The term "complexity" is.the

- formal term for the amount of ‘work done, measured by sane complexity (or

:'?_E_cost) measure. . B AR S

~.

E In g_eneral the amount of work done by an algorithm depends on the s1ze of )
- .input. = In' some cases, - the. number of .oper '
: pa : 1cular mput. Sane examples of s1ze are. N

v - - ....‘p,.

Find X in & list of names _ The nunber of names, in the '~
| 2 Multa.ply two matrices L Th : dimensmns of the 4
3. Solve a system of linear equations '

. . L s \ \- s , .
'I'o handle the situation of the -input- affecting the performance of an’

the - nunber: of equations and "
solution vectors - .

algorithm “two approaches (average and Wworsticasé analysis) are used.. The .- 2

.average approabh assumes a‘distribution of .inputs -and- then calculates. the

" number  of operations performed for each- type of - input in the distribution = =~

~ and -then computes a weighted.. average. The msjias_e approach’ calculates c
. the - ‘maximum. nunber of basic operations performed on any input of a fixed:

sizes Lo LU T

- ._,. e

" Amount .Qfﬁnas& ﬂsﬂ 'Ihe nunber of memory cells used by a program,' like:""-i

the.  number “of seconds required - to -execute a. program, depends on the

"particular -implementation. '  However, some conclusmns about ' space - ‘usage - -

..can. .‘be . ‘made.’ by examining the -algorithm. - A program- will requ::.re storage .

e

space for the instructions the constants . and - variables used by theg s

PP
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progran, and the ~anut data. It may also use same work space for
manipulating the data and storing information needed to carry. out its U

- \cpmputations. - -The' input - data- itself may be representable in several ..

’ forms, same: which require more space.than others._ If the input data has
" one ; natural form -~ for example, an.array of numbers or a.matrix - then we
~ analyze: the extra space used. aside. from_the program_and the_mput._lf_the_

EIC Y

”

. amount of -extra .space iss.constant w1th reSpect to the input s1ze, the
algorithm is said ‘to. work ":m place" ST ,

§impl1._ei_1 It is often, though not always, the case that. the simplest
‘and most straightforward -Way ‘of solvmg “a ‘problem is not.the most .
" -‘efficient. --Yet: s1mp11c1ty in an.algorithm is a desirable feature. It may. .
make verifying . the: correctness of " 'the’ algorithm’ easier, and it makes

~

- " writing, debugging and modiﬁn.ng a-program for the algorithm easier. - The -

~ time needed to produce a debugged - program . should be -considered when -
.- choosing an-algorithm, but, if the: -program is to be used very often, its -
. efficiency will probably be the determining factor in the choice. L '_ ER

"+ optimality. Two tasks must be carried out to deternine how. much”~ work is

4 necessary and sufficient to solve a problem.

( 1) Devise what seems to be an efficient algorithm call it A, Analyze A
and find a function such that for 1nputs of size n, A does;at most g(n)
basic operations. R R S ; .

(2) ‘For™ ‘same function f, prove a theorem that for any algorithm in: the
- class. under -consideration there "is  some mput of* size n- for which the
algorithm must perform at least f(n) basic operations._ ,~ Sl el

P N

g S o
If the functions g and f are equal, .thtn the algorithm A is optimal.« g

Ac_ggna_y analxs:._s ‘The computational sta'bility of ‘an algorithm is
-verified - by determining that the integrity ‘of  round. off. aceuracy is’
mamtained. _It is done manually at the requirements or specification .
levell : i o Lo o

_Tb.. A Posteriori Testlng ,, ) B A

- Once an: algorithm has been analyzed “the next step is usually the confirmation
. of the  analysis. -..The confirmation ‘process. consists first of devising a

o program for the algprithm ona particular .computer.-* ‘After the program - is

- .operational, the- next ‘step ‘is producing ‘a: "performance profile"- ‘that 1s,

_' '«;determining the precise amounts of -time and storage ‘the. program will consume.
~ To- determine -time consunption, the ccmputer clock is ‘used. Sever_al ‘data sets -

‘of varying- size.-are éxecuted and - a performance profile is developed and

'_*compared with the. predicted curve. SRR r\ e o
A’second - way to use the canputer's timing capability is to take two programs |

. which' “perform- the samé. ‘task” whose xorders: .- of- magpnitude are 1dentical and

ompare’ them as they-process-data. - The resulting ‘times will show which, if ,'q

. €ither, . program is faster. . Changes to a program which.do- not alter the order

of magnitude but which purport to speed up the program also can be tested in
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K26 - Exemple. - qucxsoar is 3 recursive - sorting algorithq ). Rougny
. Speaking, it rearranges the keys and splits the file® into two’ subsections, or

. subfiles, such that all keys in the first section are smaller than all keys in
~ - the second. section. - Then QUICKSORI_sonts_the_uvo_subfiles—recursively—(i.e.—,—

by the same method) with the result that the entire file is sorted.

Let A be the array of keys and let m and: n be the indices of the first and '
last - entries,- respectively, in the subfile .which - - QUICKSORT - is currently

- sarting. Initially, = 1-and n =-k. The PARTITION algorithn’ chooses a key K

: fran’ the .subfile and rearranges the- entries, finding an integer J such that
for mgi<y, A(1)<K; "A(J) = K; .;and for . j<i<n, CA(LK. K is~ then in its
correet position and 1s ignored 1n the subsequent sorting o . C

QUICKSORT can be described by the following recursive algorithm,-‘ b <~_;,

QUICKSORT (A,m,n) - "

_i£ m<n _thgn do - - PARTITION (A m,n i,j) ‘
i~.‘_ oo QUICKSORI‘ (A,m,J)

QUICKSORT (A,i n)

» . . .
. <

TR Figure 4.2. 61 qucxsonr Lo

The PARTITION routine may choose as K any key in the file between A(m) ‘and -
A(n), fon simplieity, let K = A(m). . An ef£1cient partitioning algorithm uses -
..tWo pointers, i-and j, initiala.zed tom and n+1, res tively, and “begins - by
copying K elsewhere so ' that the position A(i) is7/availables for. some other. .
-entry. The location A(i) is filled by decrementing until A(j)<K, and " then - .
.' copying -A(j) . into ' A(i). " Now A(j) is filled by inprementing 1 until AGD)2K, - -
-and, then copying A(4). into A(.j) Shis: procedure continues until the values of '
i and. J meet;. . then K is . , in the last” plape. ‘Observe that’ PARTITION-'*.*.
compares: each key ‘except. th& soriginal- in A(m}' to K . so it does nem -
oomparisons. -See (5). for. ﬁ:rther details. SR e

EQl:ﬁ.t _Qas_e Analms.lf when PARTITION is: exeeuted A(m) is the largest' key ‘in Tl
the current - subfile (that is, A(m)2A(1) for«nlSiSn) then PARTITION will move: -
/it to the bottam to position. A(n), and partition.the file into one section with
nem - entries - (all- but the bottam one) ‘and -one section with no “entries. i A1l | °
that has been . accamplished is moving the " maximm entry to the bottam.
‘Similarly, if* the smallest. entry in the file is Amposition A(m),  PARTITION - - -
will simply separate it fram the gest ‘of the 1ist, leaving r-m items still - to;:-._»'
be - sorted.’ ' Thus ' if ;the input . is arranged so- thateach time. PARTITION 1S

‘éxecuted, A(m) is the largest (or the ‘smallest). entry ~in “the section . ‘being :
- sorted, then -let p = n-m+1, the nunber of keys ‘in the unsorted section, then

themmberofcomparisbnsdoneis Lo e ey o
A“Pj ) ‘. 3 P ) 23 “
(’. x - R ; ES -:‘, - . . :
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Ay_enage Behaﬂ_q: Analxsis : If a sorting algorithm removes at most one -

~not: _have this. restriction. e PARTITION algorithm can move keys across a-

.- inversion from’ the permtation of the keys- after each canparison, then it must
do at least (n#%2-n)/4 . ccmparisons on the average. QUICKSORT, however, . does . ..

'* - large section of the entire file, eliminating up . to" n-2 inversions at one

time.__QUICKSOBI_desecvescit&name—because of—i;ts—average—behavior. =

time: PARTITION is _executed;. « it splits the . file into two roughly ‘equal
‘subfiles." To" simpl:n.:f}v the canputation, assume that n = 2*¥p -1 for some p.

‘The nunber ~of ccmparisons doné by. QUICKSORT on a-file with n entries under' i
. these assmgptions 1s described by the recurrence relation [ Lo

R(p) (2**p) -2+25(p—1 )
R(‘l) =0

= Tne first two terms in R(p), (2**p)-2, are n-1, the nunber of . ccmparisons done,;
..~ by PARTITION ‘the first time. - The second term is the number of canparisons '

' done by QUICKSORT to.sort.the two subfiles, - each " of - which has (n-1 )/2, ) .
' (2**(p-1)) =1, entries. _ Expand the recurrence relation toget - N

R(p) = (2"p)-2+2R(p-1) = (2“p)-2+2(2**(p—1)-2)+uk(p-2)
. j L= (2’*p)-2+(2**p)-4+(2**p)-8+8k(p—3)
o R(p) j'-= % (2**p)-(2**i) (p-1)(2**p)- }: 2**1 :
. = ((p-1)2“p)-((2**p)-2) n(081) wnel |

‘Ihus if A(m) were close’ to’ the median each time the file is split the nunber

". Consider a‘situation in which QUICKSORT works quite well. Suppose that each

Lok

-of- comparisons - done by . 'QUICKSORT . would - be of the-drder (nlog n).. If‘all -

'I

ﬁnag_e _us_agg At first glance it may seem tbat QUICKSORT is-an in-place sort o
"It is not. While- the algorithm is working on one subfile, the. beginning and
" 'ending indices (call’ them-the ‘borders) of ‘all the other - subfiles yet. to ‘be . -
. sorted must -be saved on:.a- stack, and theé size of ‘the stack depends on-the

. permutatiohs of the input data- are assimed equally likely, “then; QUICKSORT does
approximately 2nlog n ccmparisons. : ) RN S ‘ L .

. ‘number "of "sublists into-which: ‘the - file -will _be "split. ~Thisy™ of : course, . -

I S 1000 -~ 2000. - 3000 4000 < - 5000
‘-masoatr - 500+ 1050 . 1650 :.2250. ".2600 e e
- 'Qum(soar C. MO0 850 ~ 1300 1800 L2300 o e
o (Time is in mlliseconds) _f_.: B T D T
ST if’;gurg 14.2.6'-'2 ,mmssoar and‘ ouxéxsm Camparison- i

depends onn, - In the worst case, PARTITION may split ‘of  “orie entry at a time -
-in 'such a way. ‘thit n pairs. of- borders are stored . on' the . stack :lhus, the_.
amount of space vsed by the: stack is proporticnal to Mo =0 e L

CYR. N
v P T . .
- ¥ LR o o LR s s R
. - ¢ TR AT T g e

X



B J‘mmg The results of comparing QUICKSORT and MERGBSORT ‘are reported in B

e -

reference ) and are sunnarized in figure 4.2, 6—2.

8.2, 7. Efrectiveness.- Algorithm analys:.s has become an 1mportant part of

-.computer’ science, . The only issue . that limits its effectiveness is that a_ .

particular. analysis depends on a particular model. . of computation._,I_f_j:he____
.assumptions of the model are inappropriate then the’ analysis- suffers.v e

- 4,2.8. Applicability. “An’ analysis of an algorithm can“be limited by the '

of the same: class.

- current. state of . the art and the ingenuity of the analyst

.4, 2 9. _‘ Learning Algorithm analysis requires significant training in
mathenatics and . computer science. Generally, it w111 be done by. a specialist. _

ll 2 10 Costs. The cost to analyze an algorithm is dependent on the
complexity . of~ ‘the’ algorithm and the amount of understanding about algorithms

ll 2. 11.: References.gf‘ ,fj' - Y

- (~1) BENTLY, J L., "An Introduction to Algorithm Design" anpu_t@x: Feb

r -

1979 i . . , e —
. (2) WEIDE, B., m" Survey of- Anaiysis Techniques for _Discrete" o
Alsorithm " cmmatmg&ums Vol. -9, No.., 4, Dec 1977. RS SRR ,-1

6#)" sz_m,micatm_nspi.me ACJ!,Vol 4 N0-7,pp 321 July 1961..

: (3) AHO, AV., HOPCROFI', J &, and ULLMAN J D.,' "The Desig) and
Analysis of Canputer Algorithms " Addison-Wesley,Reading, ‘Mass., 19714 . -;. -

: (4) HORWITZ, “E., and SAHNI g _ "Fundamentals : of Ccmputer
Algorithms n Ccmputer Science Press,Potanac Phryland 1978. .' O

(5) HOBRE, C.A:R.," "Partition: (Algorithm 63).and: ouxcxsoxr (Algorithm -

.
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ll 3.2. ..Basic features. . The purpose 1s to provide performance 'evaluation and *
capacity planning information ona system design. The process. follows the top
- down approach tmdesign through ‘hierarchical. levels of resolution. - It:‘can’ "be "~
_applied_at_early_design“stagesmhen—maetipna}—moduies—are‘relatrveiy‘large*f“f
and where knowledge of their’ execution ‘behavior may- be imprecise. . As the ' -
- design. proceeds “and the modules. are further resolved the estimates of their -
. behavior and-execution resource. characterization become more precise. The
.-approach - is"- prediwted on. two- representational bases: - on extended .execution
~ graph models of* programs and systems “and ‘onr extended queuemg network models'
o of computer system hardware resources and workloads.~.,__. O /'
) . I .

4 3. 3. Infomation 1nput e informat:.on which is needed forf:th;s techmque .
.consists of ﬂmctional design and performance specifications a follows. L <

~%

Identification of the functional canponents of thersofWare des:.gn
.tO bemeledo "- DR o ,‘ - . . '_ . . ','.', .'._.._ ‘%--._—_ﬂ

»

s o b.. Identification of the execut:.on characteristlcs (prfimarily,_
- execution time es‘timate) Of'; each functional component “ :

, '_ - e, Ah execution flow graph th.ch gives the definitlon of the order of
execution of the various fun,c,tional canponents LT ,.,,g E

- -l L
- " 4 .
RS

,ﬁ ' d Execut:.on enviroment specifications which can mclude mformation
W _.such as " operating system :overhead and the workfoad on the system that could
potentially impact the particular sofmare- under. -development . ,

'd
e
T

- e System execut'ion scenarios which prov1de the- definitions of the
,;;;.external inputs to the model needed for each sinmlation of the model._ U

«

f.. Performance goals for the total system and components (an example c

L
. I3
Te

1S an upper - bound for ~the mean- ‘and’ variance of the ‘response tme for a

- specified execution envirorment - and’ scenario).l BEEEEE SRR S
Py 4 3.4, Infomation output Output ‘fram the technique fmll cons:.st of? the
: following:- BN A ,. cote S S S
a.. A lower bound ‘on the performance of the system T ,’ ,
o . A comparison of the performance goals w1th the performance i
TI’ rewfts . . N vl.v . . . . a- “ A : L. '4-4*--"
R ‘Identification of. the functional components; nnicnriaq th“e g‘réa'test -
,.effect on system performance. o S e o AR S LTe

ST

-

ll 3.5.~ Outline of method Much of the effort in using this technique comes:-
- in’ the - preparation “of. ‘the: necessary input. information. ‘Once’ this has been -
.;-done, it'is ‘generally suhnitted o a- computel” which-performs the simulation:-of'.-
- .the . execution -of - the model and reports the results, which are then’ dnalyzed
and the”mcdel revised as necessary.v The specific steps in the technique are

Lo T
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"s..

hierarchical 'in"'s‘fru'ct ure, -a-model’ may be modified to 'represent the sysuém at -

*-different- levels of detail each being analyzed at different stages in. the -

"~ b. The order. of- execution of the components is determined and the
execution graph is constructed o o e

t -
L o Resource requirements (e.g., hardware “or operating System '
resources) of  the _functionai - components are identified .and a. possible -
.- enviroment :is: studied with the specific resource workloads . being determined.
“These.- workloads consist -of .the average wait and usage times for “the- resources
controlled by the envirorment and used by the software (such as’ average disk
accesstime). oo ORI oo  7‘ . _ e

A-. The workloads are then mapped into the model (as represented by
the execution .graph).  'based upon  the identified envirorment ‘resource
requirements of the mdividual functional components o - _, e

R :e.'" Next the system execution scenarios -are constructed 'l'he
external .inputs”’ comprising _each scenario may ‘be’ for;m:lated for- example,
‘terms of the number of ‘disk accesses. required to find a needed data iten;':-

= within a particular component

f Upon completion of the above steps, the model is driven, producing

\ system and -component’ perfor'mance results, (The "driving" of the model is .

. usually done using a _system simulation tool such .as '‘GPSS; General Purpose _
Systems S:unulator, on a codedcspecification of the model ). A 2

L g. Jhe performance results are now compared with the performance
goals Tof the system. If the .goals . are .not. - met, performance critical
components -are then- analyzed: in order to determine where improvements ‘ycan ‘ be.
-‘made,: - .The ™ deSign is ‘modified and the technique repeated - This process
~continues . until the performance is acceptable or until it can be determined

- that the goals are unreasonable. S

4 3 6.. Example. Finite element analysis is ‘a technique for determining
characteristics such as deflections: and “stresses . in .a ‘structure . (t.e.,
building, _airplane, -ete.) otherwise too camplex: for closed ~form mathematical
- analysis, . The structure is broken. into a network of simple elements (beams,
-.-shells, . or cubes dependmg ‘on the geametry of the: structure), each ‘of which
has stress and deflection characteristics defined by classical theory. CoL

Detemining the behauor of the entire structure then beccmes a--task . of
solving the resul:ting set of simu,ltaneous equations for all elements.‘ CoT

'me exanple developed below is a portion of “a system which does -a finite
element analysis. . Consider ‘the sof tware execution- graph in Figure 4,3,6-1, . .
Only the top 1eve1 of the processing is illustrated here._. “The " CPU ““time. hand _

- -
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;’ Figure 4 3 5.1 optmization Example (reference?(ﬂ)

Find-beam definition ~ R O EIT
‘Sort onbeam pumber: - 72";, - S 32 644
Retrieve beam definition » T2 ,' : 88, ,832 ..o L
Find node:locations =~ =~ - T2r s 3 018, 726"
‘Retrieve. node. lmtions 36 A s 177 016 R

Total 203 " mm.
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lhe elapsed time to canplete an I/O operation is assuned to be 30 ms. Other'
g specifications are unimportant in- this example. SRR

1'he ave:ageinesponse,i:ime_fon%his—scenario—ﬁzﬁ—‘seconds‘—(m minutes)
- This " is clearly. unacoeptable for an interactive transaction.  The bottleneck -
. ar_lalysis indicates'that;.the'CPU ‘is  the-critical | resource since it.has a higher-
- ratio 'to" the elapsed .time than the _I/O.‘ratib Furthemore, the "find node
location" component is the critical canponent e _ , .

-~

The processing details of tbis collapsed model are not shown, . however, close
~ examination. of the " details :indicates.: that a nfind".data base command is |
- invoked' for -each of ‘the three search keys, “and ‘then takes: the intersection of
the records that’ qualiﬁr. Alse, it is found that the result of:-the "fingdn nfor .
- the; problem number search key is invariant throughout the" loop and need not be
repeated'.i A knowledge of the nature of - the problem leads to the observation .-
that'most of the ‘time (855) ¢the "find" ‘on the pode 1 ,kgx yields the same.
-result as - the " "find" oh the m 2 Kkey from the previous pass through the -
loop, and need not be repeated The results of this analysis indicate changes
which optimize ‘the” process. A e R : .

lhese optimizations* are reflected 1n the execution graph in Fi e 4.3 6-2. '"
'l'his graph is :more complex;’ H however, the. total wprocessmg req ements are -
educed aslshownin'l‘able436-2 g

The response time has been r_egm by 3023 seconds, a. substanj:ial savings!

- The’ response -time (303 seconds)- is still ‘unacceptable:: for most ‘on=line -
applicationsQ Another optimization, storing the "beam def" -data in. béam .

‘number- sequence, - precludes- the” sort.  _The: resulting response time is’ 269

secobds This optimization" process continues unELl a »resulting response time

of 82 seconds is obtained .

Find beam definition o i
Sort\bean number R 72 ; T 32 6!44; A

" Fird node’docation . V' - .. .4 o KWO7sT

.“Regrieve. bean~definition T2 . 8 -88,832 = L

. Find mode-location: . o

B-tree 70 _ o ST e 02 P

Retrie\fe 2nodes .. . . == T 100 2

“Find 1 node; . ~ % o o o o -26,000 s e
~“Retrieve 1 node S e - 71,8000 - s

Record w oo _,3_6. T 216- L
~Total - S A ,208 PRI 297 580« ms. §\ o

’\ | _ TABLE 4, 3 6—2 'RBGJRCE REQUIREMENTS FOR REVISED OPTMZATION EXAHPLE ~

. - - v
v : . ' Mo z .
, L T
. C ~.
A . : 2 o » - .
,2 .
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The performance is still only marginally acceptable, . but it is a dramatic.
improvement - over the' original design. " " The- bottlenecks .are detected and -

corrected prior to actual coding and therefore, the ,modifications require

W*@fw:.

B . . - . . - N v
PR -~ e R U ¢ : . . e

-“t

ll 3 7 . ;*Effectiveness The accuracy of the performance prediction is only as’ o
good as “the- quality vof the performance specifications. ‘The quality of" the
m,specificntions usually improves during the design process. ~ A simplified
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approach is used to: analyze queuemg neuvork models. This resm.ts in-"
approximation of the relationships between contending resources. Several
compensating features are used to offset the approximations used

4.3.8." APPllcabﬁitY - The technique - generaily appllcable 3 "i:b""
nondistributed systems... S .

ll 3. 9. Learning 'Ihe user of this approach needs to be familiar with _the

oo el
- X

: intricacies of the modeling techniques used. . L _
| 4.3.10. Costs. The preparation, analys:Ls, and solution of the model costs :

approximtely 5% t0 158 of the total design costs.. O

. (1) SMITH; C. 0, ,” "The Prediction and Evaluation of the Perfomance of.
. Software From. Extended Design Specification" Ph D Dissertation, University N
- of Texas at Austin, August 1980 i

-' “ ' (2) SMITH,.C.U.;"and BROWNE,  J. c., s "Performance Specifications ‘ang -
Analysis of Software Designs" Bm.e_@ings of the Conference’ on.
Haaﬂment, and mdelinz .Qf. S‘&nm .st.@s Boulder, CO., August 1979»
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oo+ 4.4,1, 0 Name. “Assertion Generation. - °
) 4.4.2, Basic features. -Assertion generation is not so :much - a_  verification
'—‘—tecbnique—itSeIf—‘—asfitéis—;fomdational‘fto*afvamety .of other techniques. -
- Assertion generation is the process - of. capturing ~the inténded functional
- properties, of a-program in-a special notation .(called the assertion language)
- for insertion into the various levels of program specification, including the
. program. source -code. . Other -verification  techniques: utilize the. embedded -
~_A@ssertions in the process of comparing the vactual-.functiqnal_,properti'.es;of the

'program with the intended propg{ties_;_, P T
" '4.4.3, . Information input. A specification. ‘of the--desired functional
properties of the program is the input required for assertion generatioh. For |
individual modulés, this breaks down, at a minimm, to a specification of the
... 'conditions which "are "assumed™ true on a modulé- entry-and a’ specification- of
e the;_,conditionsﬁlgaired on module exit. .If the specificitions fram -which the
- assertions ' are': to be'.der_ived,include.«gj'algqpitlmic detail, the specifications.
... will indicate,conditions which are to-hcld véﬁ’{inter‘mediate'points_within.. the
. Wodule as well.” Additionally, assertions can state data ‘characteristics, e.g.’
- loop invariants, ‘physjeal units.or a variahle, as input only(can not be set)y. ..

4.%.4. Information - ocutput.. The. assertions. which ‘are created ,fran.)-th\‘;‘_.\__

~ functional . or  algorithmic "specificaticns are expressed in a notation called
the -.assertion language. ~ This notation comdhly includes -higher . level "
expressive constructs that are - found,. . for. example, in - the ' programming
‘language. An example of such a. construct is a-'set.” Most ‘commohly,. ‘the
assertion language  is " equivalent . in ..expressive . power -to the first order P

. predicate .calculus. . Thus,.expressions such as. . "forall i ‘in- set S, A[i]
: A[i#1]" or . "there exists x such-that £(x) = 0" are possible.: The' assertions--
~.which are generated, expressing the functional properties of .the program,. can.
then be used:.as input'tc¢ .a dynamic. assertion processor,a formal ;verification
- 'tool; walkthroughs, _speﬁ'_c{.fidation:simlatbrs;‘ and -inspectiofis, “among other V&

W45,  outlinesof method.” js"ser;ti'on generation - proceeds hand-in-hand with

- the- hierarchical elaboration of program: functions. . When, during-development, -

- aTunction'is identified as being needed, it is ‘usually. first .specified -by:
. 'what “input -it is-expected to-take and ‘what' 'the characteristics of the output ' .

- @re (outputs are often. in terms of-the-input-quantities).” For:such a:function -

- it is possible:to-generate. input:and output -assertions without-any knowledge “
v, Of how the function performs its task.. The input assertion’éxpresses the
. » requirements ‘on-:the, dataithe function is to use during.its processing. The
. .output assertion expresses what is-to be true on’ _mnction—tgerininatlon. Rl

~* Later, as the-function is elaborated, ‘the-designer or codér will identify’ the -
.. 'necessdry . steps: to:: be “‘taken in order to accamplish what is required -of the.
- sfunction, - After: e 'iEEt'epﬁ”it'E;an be said that a-"part" ©of- the task  has beeq\
#, “accomplished.. "That \part is:necessary for the Proper operation; of- the:next
~  step; and so on, until .the entire function has been:realized. ' ‘The " character - -

" of “each .parti-can; beicaptured by - an’“assertion’ in. the ~Sdme:way as.the .

.. description-of the ‘éntire  furiction.: “The. output ' assértion: for., ode step””
.- pepresefits (at least, part of) “the input Sosestien for the follouing step.
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g Snch assertions are m.‘[led intermediate assertions. | _ |
Each assertion, input output,, and intermediate is expressed usmg_lthe

. assertions. _ - BN

assértion language and is placed the specification of the function being

implemented at the appropriate’ ts. ~-Thus, the -program “source- text ‘will. .

-include in it .all the assertions developed during the requirements des:.gn,

. and ooding phases. S _ _ e
| vSane prOgranning languages int:lude facilities for expressmg assertions in the-v' .
. source - code’ -but..most dé not. ses it is custamary to include the
assertions within ccuments for- :Lndeed ocunentation expressing the "

.~ desired functional oharacteristics of th Subsequent: V&V tools, .such.
- as dynamie assertion processors, are cons cted ‘to. utilize these special
. comuents ' during” .their . processing.™: Dynantg

- method for dynamically veriﬁring that the program is behav:Lng .a
) intended épecification is: possible. e ._ N

| often- important to. formilate assertions which are al "' t' é at speciffc
points within the loops. . Such assertions are termed . ‘invgfis

Y : . _;d . - ° - R,

"ll ll 6. ..Example. Since assertion generation is so closely entw:.ned with

E progran development only a brief example is presented here. r-_'or mo_re thoro_ugh‘
"1;'examples see references (1-5). RS o R

During progran developnent the requirement arises for sortmg the elements of‘ |

an': ay or table. -In-order to support flexible processing in the rest of the

.~ systeq, the array is declared with a’ “large, fixed. Iength. However, 'only a
. port n of the array has element® in it. The nunber of elements currently in - .
t-. element -

. the/array, when passed to the sort-routine, is contained’ in
of ‘the array. The -array  is always to be/sorted in ascen‘ “order. The

Sorted- array is: returned to the calling progran through the same formal .,7_,;_-_;.;

'paraneter

'};;. smanou'rm-f soar ( A DIM )

- C A is the aéray to. be sorted PR e T o
G DIM is the dimensmn of A - T A RO
c ) ~ RN g | . ‘v "f.» . e .. =_'>. g
- el 33 o
- o e ;,'_ L. -_{.‘_l . . . s -, >
“ 4'.,.; B .

c-assertion processors are able to

- ~ check 'the validity ‘of the source, assertions during program execution. Thus .a.
cording to 1ts,}____,ﬂ-_ )

il

[
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e The cliaracteristics of the wbroutine pay. e - partially captured by the, ".
R following assertions.v Notat:lonally, :"or" and &."and" R '

i

Abbl.‘.ﬂ'.l‘ INPUT_ ((KACT)SDIH) (DI!Q?.)
ASSERI OUTPUT (A(1)=0'v 5(1)-1 &:.&‘BE.) v‘ '
(A(T))‘l & FORALL I IN [2. ‘. A(1)] A(I) A(I+1))

'me input assertion-notes the required characteristics of A(I) and DIH. The-:
output . assertion indicates  that if there were 0 or 1-elements in the. array,,.:
- the array.is sorted by default.  If there are. at . least 2 elements m the
array, thenthearrayisinascendingorder T L B P S

me next level of the progran may have the follwing appearance. An ,
S intemediateassertionisnow shown o T SR

e ,suaaourmz som' (n,nm)

"A is’ the array to be. sorted
f.DIM is thedimension ofA

- ASSERT INPUT:(O<A(T). DIM), - (DIH>2) R S

T @) CLE. DGO 100 - T T
- “Sort bt vial array | T A
| ,.'Assm'omur (A¢1)=0 VA(1)-1 &.tmg) v Lo .;_"
.,_-::Rgénn & FORALL I 0 2. A(m A(I).SA(IH)) ( n

REWRN e R Loon

0000

Ldaan
8

‘,Suppose a. straight'selection sort algorﬁhn is chosen for 1:he non-trivia} casé
"(1.e., »£ind. the smallest.element and place it'in. A(Z), find ithe next élnallest -
and-place ‘it in A(3),-and so forth, where the origindl contents of § (I) 18 -
excha_}pged with the -element . that . .belongs: in ‘the: Ith poaition in-the sorted:

, ] ion is ing Ath the sorting

By «PERFORH STRAIGHT SH.ECTION SORT Lol
.b ~m_59 J 2,‘ A'(“]") j i “‘ . ~,.- J

f{:-..f S
... .C find anallest element in A(JJ ‘. r>A(A(1)+2) e _
"~ €. . let-that elanentbeA(K) R A T *

Tt >
W .

© . exchange A(J):and.AK) .. . . Sl e T

oo ASSERT (LA
- *{FORALL TIN [2

At'm A(I)SA(IH)) EEE ,, ._.:j.,_._;.-___;:.;;._j
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) A szgnifiwnt 1ssue which e have not dealt with fyet ds’ asserting,
S termination, that the sorted array. is-a permtation of. the original array. - In
E ‘other words, we wish to assert that in the: ‘process ‘of - sorting, " no &Fements .
'___,.iwex:e._lost To~do%1t—at—the—kﬂ:ghest—level——our~first~attamlr at the" program
requires advanced .assertion" language facilities. o 'I‘he interested reader iSj a
referred to references (1) and (5) _ R T EREU

- u.li 7. Effectiveness. < Asserti°on generation, _-particularly when used 'in=

3 conJunction with allied techniques -1dike. -dynamic = assertion processing or. "
. furictional - testing, "éan “be. extremély. effective .in - valding . V&V, " -Such
- effectiveéness ° -is - only" possible, however, . when’ the assertions ‘are used to
capture the: mportant funetional “prope ,of the program Assertions such_-
as the foIlowing are of no. use at- all. . S S

o . e L -
g . . . P -

Capturing the. 1mportant properties m be a difficult -process qnd 1s prone to__
," ~-error. Such -effort is well